The Frizzled-dependent planar polarity pathway locally promotes E-cadherin turnover via recruitment of RhoGEF2
نویسندگان
چکیده
Polarised tissue elongation during morphogenesis involves cells within epithelial sheets or tubes making and breaking intercellular contacts in an oriented manner. Growing evidence suggests that cell adhesion can be modulated by endocytic trafficking of E-cadherin (E-cad), but how this process can be polarised within individual cells is poorly understood. The Frizzled (Fz)-dependent core planar polarity pathway is a major regulator of polarised cell rearrangements in processes such as gastrulation, and has also been implicated in regulation of cell adhesion through trafficking of E-cad; however, it is not known how these functions are integrated. We report a novel role for the core planar polarity pathway in promoting cell intercalation during tracheal tube morphogenesis in Drosophila embryogenesis, and present evidence that this is due to regulation of turnover and levels of junctional E-cad by the guanine exchange factor RhoGEF2. Furthermore, we show that core pathway activity leads to planar-polarised recruitment of RhoGEF2 and E-cad turnover in the epidermis of both the embryonic germband and the pupal wing. We thus reveal a general mechanism by which the core planar polarity pathway can promote polarised cell rearrangements.
منابع مشابه
Structure–Function Dissection of the Frizzled Receptor in Drosophila melanogaster Suggests Different Mechanisms of Action in Planar Polarity and Canonical Wnt Signaling
Members of the Frizzled family of sevenpass transmembrane receptors signal via the canonical Wnt pathway and also via noncanonical pathways of which the best characterized is the planar polarity pathway. Activation of both canonical and planar polarity signaling requires interaction between Frizzled receptors and cytoplasmic proteins of the Dishevelled family; however, there has been some dispu...
متن کاملThe Fz-Dsh planar cell polarity pathway induces oriented cell division via Mud/NuMA in Drosophila and zebrafish.
The Frizzled receptor and Dishevelled effector regulate mitotic spindle orientation in both vertebrates and invertebrates, but how Dishevelled orients the mitotic spindle is unknown. Using the Drosophila S2 cell "induced polarity" system, we find that Dishevelled cortical polarity is sufficient to orient the spindle and that Dishevelled's DEP domain mediates this function. This domain binds a C...
متن کاملMutations in the cadherin superfamily member gene dachsous cause a tissue polarity phenotype by altering frizzled signaling.
The adult cuticular wing of Drosophila is covered by an array of distally pointing hairs that reveals the planar polarity of the wing. We report here that mutations in dachsous disrupt this regular pattern, and do so by affecting frizzled signaling. dachsous encodes a large membrane protein that contains many cadherin domains and dachsous mutations cause deformed body parts. We found that mutat...
متن کاملFormin-mediated actin polymerization cooperates with Mushroom body defect (Mud)-Dynein during Frizzled-Dishevelled spindle orientation.
To position the mitotic spindle, cytoskeletal components must be coordinated to generate cortical forces on astral microtubules. Although the dynein motor is common to many spindle orientation systems, 'accessory pathways' are often also required. In this work, we identified an accessory spindle orientation pathway in Drosophila that functions with Dynein during planar cell polarity, downstream...
متن کاملA Dual Function for Prickle in Regulating Frizzled Stability during Feedback-Dependent Amplification of Planar Polarity
The core planar polarity pathway coordinates epithelial cell polarity during animal development, and loss of its activity gives rise to a range of defects, from aberrant morphogenetic cell movements to failure to correctly orient structures, such as hairs and cilia. The core pathway functions via a mechanism involving segregation of its protein components to opposite cells ends, where they form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 140 شماره
صفحات -
تاریخ انتشار 2013